====== Math plugin ======
S(f)(t)=a_{0}+sum{n=1}{+infty}{a_{n} cos(n omega t)+b_{n} sin(n omega t)}
delim{|}{{1/N} sum{n=1}{N}{gamma(u_n)} - 1/{2 pi} int{0}{2 pi}{gamma(t) dt}}{|} <= epsilon/3
int{x}{2}{dx} = {1}/{3}x^3
int{0}{1}{x^2 dx} = {1}/{3}
3/{4 pi} sqrt{4.x^2 12}
lim{n right infty} sum{k=1}{infty}{ 1/{k^2}} = {pi^2}/{6}e^{i pi} + 1 =0
====== Latex ======
\frac{3}{4 \pi} \sqrt{4 \cdot x^2 12}\\
\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}
e^{i \pi} + 1 = 0 \\